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Motivation

Introduction

Meta-induction: approach to justify induction

Recent criticism: provides only a justification of a single instance of induc-
tion

We argue by the help of an optimality principle against this criticism.

Furthermore, we outline how by the help of optimality and shifting from
(meta-)induction to (meta-)abduction one might justify laws.

Our investigation is a particular instance of epistemic engineering.
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Epistemic Engineering and Meta-Induction Epistemic Engineering

Epistemic Engineering

Epistemic Means-End Principle:

ulterior epistemic ends︷ ︸︸ ︷
O(A) & 2(A → B) ∨ (B ◦→ A)︸ ︷︷ ︸

epistemic engineering

⇒
derived epistemic ends︷ ︸︸ ︷

O(B)

Most important: Make your (epistemic) ends explicit!

Also, apply normative reasoning, e.g.: Ought Implies Can Heuristics:

¬∃B(B is a means for A) ⇒ ¬O(A)
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Epistemic Engineering and Meta-Induction Epistemic Engineering

The MI-Approach in a Nutshell

1 Hume’s problem is about an absolute justification of induction. (Hume)
Schema: O(absolute success)

2 There is no means for such an absolute justification. (no free lunch)
Schema: ¬∃B(B is a means for absolute success)

3 Hence: We need new epistemic ends. (ought implies can)
Schema: ¬O(absolute success)

4 We aim at a relative justification. (Reichenbach)
Schema: O(relative success)

5 There is a means for such a relative justification. (meta-induction)
Schema: (meta-induction ◦→ relative success)

6 Hence: (Meta-)induction is justified. (means-ends reasoning)
Schema: O((meta-)induction)
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Epistemic Engineering and Meta-Induction Epistemic Engineering

Epistemic Re-Engineering: Reichenbach’s Vindication

Instead of O(absolute success), aim at O(relative success)

Skyrms (2000, p.46): “If no method is guaranteed to be successful, then it
would seem rational to bet on that method which will be successful, if any
method will.”

Lightbulb-Example

• You have to bet on some colour.
• Possible states:

1 No light turns on.
2 The orange light turns on.
3 All lights turn on.

Predicting  is not sufficient for success, but necessary: Whenever you are
successful with your prediction, you would have been also with predicting .

Induction: might fail, but if we are successful, then also by induction
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Epistemic Re-Engineering

⇒

Epistemic Engineering 7 / 33



Meta-Induction as an Optimal Prediction Method



Epistemic Engineering and Meta-Induction Meta-Induction as an Optimal Prediction Method

Meta-Induction

Distinction: Object-induction OI (applied to events ) vs. meta-induction MI
(applied to methods).

A meta-inductive method favors prediction methods according to their ob-
served success rates and attempts to predict an optimal combination of their
predictions.

Crucial features of the meta-inductive solution proposal to the problem of
induction:

• Is compatible with Hume’s diagnosis that one cannot demonstrate the reliability of
induction.

• It shows something weaker: predictive optimality of meta-induction in all possible
worlds, among all methods that are accessible to the subject (‘access-optimal’).

• The shift to optimality copes with skeptical-scenarios: even in induction-hostile
worlds, induction may be optimal (“the best of a bad lot”).

• Shift to meta-induction reduces the inaccessible infinity of possible methods to the
finiteness of accessible methods.
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Epistemic Engineering and Meta-Induction Meta-Induction as an Optimal Prediction Method

Meta-Inductive Justification of Induction

The justification of MI is analytic and ‘a priori’. Per se, it does not warrant
OI, because the possibility of clairvoyants cannot be excluded a priori.

However, the a priori MI-justification implies an a posteriori justific. of OI:
So far OI was a most successful prediction strategy; thus it is meta-
inductively justified to favor object-induction in the future.

Technical results:

Definition

A (real-valued) prediction game is a pair ((e),M) consisting of:

1 An infinite sequence (e) := (e1, e2, . . . ) of events en, whose possible values
are coded by real numbers: en ∈ Val ⊆ [0, 1].

2 A finite set of simultaneously accessible prediction methods (‘players’) M =
{M1, . . . ,Mm,MI}. The Mi are the candidate methods of MI. In each round
n each method delivers a prediction predn+1 of the next event en+1.
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Epistemic Engineering and Meta-Induction Meta-Induction as an Optimal Prediction Method

Meta-Inductive Justification of Induction

Important: Even if events are binary (ei ∈ {0, 1}), predictions may be real-
valued, pred ∈ [0, 1] (’mixtures’ of events).

Application: Probabilistic prediction games. Here the predictions are
probability distributions over event values, evaluated in regard to the true
event value.

Success evaluation:

• Deviation of predn from en is measured by a normalized loss function,
loss(predn, en).

• score(predn, en) =def 1− loss(predn, en).

• sucn(M) = sum of scores until time n, divided by n,

• maxsucn is the maximal success rate of all methods at time n.
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Epistemic Engineering and Meta-Induction Meta-Induction as an Optimal Prediction Method

Meta-Inductive Justification of Induction

Different variants of MI are possible (Cesa-Bianchi and Lugosi 2006).

Most efficient is attractivity-weighted meta-induction aMI

predn+1(aMI ) =def

∑
1≤i≤m

wn(Mi) · predn+1(Mi )∑
1≤i≤m

wn(Mi )

with cleverly defined success-dependent weights wn(Mi ) (definition
skipped).

Major result

Theorem: Universal access-optimality of aMI : For every prediction game
((e), {M1, . . . ,Mm, aMI}) with convex loss function:

i (Short run:) (∀n ≥ 1:) sucn(aMI ) ≥ maxsucn − 1.78 ·
√

ln(m)/n.

ii (Long-run:) sucn(aMI ) converges to maxsucn for n → ∞.
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Epistemic Engineering and Meta-Induction Meta-Induction as an Optimal Prediction Method

Three Important Generalisations

The optimality theorem generalizes:

• to arbitrary non-convex loss functions, if optimality is explicated in
terms of the average success in a collective of aMI-meta-inductivists;

• to prediction games with an unboundedly growing set of methods;

• most importantly, to action games, by identifying each action with
the prediction that this action will yield maximal payoff, and the actual
payoff with the event;
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Epistemic Engineering and Meta-Induction Meta-Induction as an Optimal Prediction Method

Challenge of Igor Douven (2022)

He acknowledges the optimality justification, but argues:

Optimality doesn’t explain why object-induction is so highly successful, so
strongly superior to non-inductive methods.

For this purpose we need assumptions of inductive uniformity, or lawlikeness.

They are assumed in Douven’s explanation of OI’s success by simulation
studies.

Douven assumes that the a posteriori justification of OI provides a justifi-
cation of these inductive uniformity assumptions.
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Epistemic Engineering and Meta-Induction Meta-Induction as an Optimal Prediction Method

Challenge of Tom Sterkenburg (2022)

No – the optimality of OI is based on past success rates and can only
justify the belief in the inductive prediction of the next future event, but
not belief in general inductive uniformity or lawlikeness.
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From Optimality to Rational Belief

The general problem: The transition from optimal methods to the justifica-
tion of particular beliefs generated by them.

Epistemological challenge – Scepticism & suspension of judgement:
Why isn’t it more rational just to act meta-inductively optimal, but to suspend
one’s belief in the truth or probability of the predictions on which one bases
his/her actions? (e.g.: stock-market predictions, one might simply “operate” without believing)

Proposed Solution: (a principle linking optimality-reasoning to norms of (degrees of) belief)

The optimality principle (Schurz 2022)

If aMI applied to a candidate set containing some minimally rational methods (OI ∈ M,
total evidence E) recommends a prediction pred , and . . .

* we are forced to act as if we have a probabilistic preference for one among all possible
predictions,

then it is epistemically rational to infer that pred is more probable than all alter-
native predictions, with probabilities estimated by aMI over probabilistic predictions,
PaMI (predn+1|E).
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Epistemic Engineering and Meta-Induction The Optimality Principle: from Optimal Methods to Rat. Beliefs

From Optimality to Rational Belief

Condition (*) handles the problem of suspension of judgement.

It follows from the requirement of cognitive coherence: our explicit (degrees
of) beliefs should agree with our implicit beliefs embodied in our actions.

The antecedent of (*) holds, because choices of actions are implicit predic-
tions.

Transition from justified degrees of beliefs to justified qualitative yes-or-no
beliefs:

By Locke’s threshold condition: H is believed iff P(H|E ) ≥ α (>
0.5), where α is determined by the given context (comprehensive
debate; most recently Douven 2021).
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Epistemic Engineering and Meta-Induction The Optimality Principle: from Optimal Methods to Rat. Beliefs

Meta-Induction AND the Optimality Principle

How far do we get with meta-induction & the optimality principle?

We argue in four steps and conclude with an objection:

1 The optimality principle leads from the a posteriori optimality of an aMI -
weighted probabilistic prediction based on past track records, PaMI (en+1), to
an a posteriori reason for having degrees of belief according to PaMI (en+1).

Sterkenburg’s objection: Prima facie, PaMI applies only to the next event.

2 But this is not true.
Prediction games may not only be applied to the next event, but to finite
sequences of future events. The probability functions are formulated for ar-
bitary future events.
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Epistemic Engineering and Meta-Induction The Optimality Principle: from Optimal Methods to Rat. Beliefs

Meta-Induction AND the Optimality Principle

Our argument continued:

3 Given that object-induction (OI ) is a posteriori justified, almost all probabilis-
tic methods that achieve a significant weight after a sufficient number of test
cases n will satisfy the principle of exchangeability:

P(en+1|e1, . . . , en) = P(ein+1 |ei1 , . . . , ein)

for arbitrary events ei1 , . . . , ein of the sequence. (I.e.: you might permute indices)

Exchangeability is a weak inductive uniformity assumption.
Also, exchangeability will be embodied in our actions. For example, we regard
it as improbable to win a lottery, regardless of when it takes place in time.

4 By the representation theorem of de Finetti (1980), an exchangeable P is
identical with an expectation value of statistical probabilities (Schurz 2019,
sect.4.4).
General statistical hypotheses are a weak form of lawlikeness assump-
tion.
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Epistemic Engineering and Meta-Induction The Optimality Principle: from Optimal Methods to Rat. Beliefs

Meta-Induction AND the Optimality Principle

Conclusion: It seems that:
Belief in weak inductive uniformity (exchangeability) and weak lawlike-
ness (general statistical hypotheses) is justified by meta-induction & the
optimality principle.

Can we proclaim ’victory’?

Not so easily: The implicit beliefs embodied in our actions cover at most
a finite amount of our future – they strech to future generations, but not
necessarily to infinity.

One may restrict the inductive uniformity assumption to the practically rel-
evant future and remain agnostic or even counter-inductive in regard to the
fast-distant future.

What speaks against restricted uniformity/lawlikeness assumptions?
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Meta-Induction AND the Optimality Principle

Possible answers: they are less simple, ad hoc, don’t cohere with background
theories – therefore they are worse explanations than general lawlikeness
assumptions.

These arguments go beyond what can be justified by meta-induction over
predictive success.

The inference to explanations that are better because of virtues different
from predictive success is an abductive inference.

⇒ Before we turn to abduction, we must get clearer about the notion of
lawlikeness.

The idea that observed regularities are best explained by laws of nature is
due to (Armstrong 1983; Harman 1965; Lipton 1991).

The plausibility of this thesis depends on what is meant by “laws of nature”
⇒ next section.
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Weak versus Strong Lawlikeness
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Weak versus Strong Lawlikeness

Weak versus Strong Lawlikeness

Compare:

(SL) Salt dissolves in water. Strongly lawlike.
Law of nature, physically necessary.

(WL) All ravens are black. Weakly lawlike.
Depends on contingent conditions.

Note: Comprehensive debate . . . authors arguing that genuine laws occur
only in physics have (SL) in mind; authors arguing each special science
has its own laws have (WL) in mind (Reutlinger et al. 2019; Schurz 2013,
sect.6.6)

The output of meta-induction & optimality principle:
at most weakly lawlike generalizations “all, or x% of, F s are G s”.
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Weak versus Strong Lawlikeness

Weak versus Strong Lawlikeness

The differences between (SL) and (WL) depend on background theories.

(SL) follows from fundamental laws of nature alone.
E.g.: Ionic substances dissolve in polar solvents (given standard temperature, pressure).

(WL) does not follow from fundamental laws of nature alone. It depends
on (i) laws of nature and (ii) on contingent conditions, that could be broken
by interventions. (There could be a mutation in raven colour genes).

In regard to (WL) we may rightly be unsure whether we should predict weak
uniformity only for the next future (next 100 years) or for an indef. future.

Conclusion: (SL) has to be supported by background theories of funda-
mental laws, containing theoretical concepts going beyond observation.

Their just. goes beyond induction and requires theory-generating abduction.

Epistemic Engineering 22 / 33



Justification of Theory-Generating Abduction

Justification of Theory-Generating Abduction

Epistemic Engineering 22 / 33



Justification of Theory-Generating Abduction

Instrumentalistic Success

Instrumentalistic success-evaluation of theories: By meta-induction over an
aggregated convex measure of success in predictions and simplicity.

Major difference to meta-induction over predictions:
We can observe only the truth value of empirical predictions, not of theo-
retical laws. Therefore the optimality principle developed so far is too weak
to justify belief in the theoretical part; only in empirical consequences.

Optimality principle for instrumentalistic success: If a theory (or combi-
nation of theories) T is justifiably access-optimal w.r.t. instrumentalistic
success, and . . .

* we are forced to act as if we believe in the predictions of one of the
possible alternative theories,

then it is rational to believe in the predictions of T (with meta-inductively
estimated probabilities).
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Justification of Theory-Generating Abduction

Instrumentalistic Success

Example – Predictions of moving bodies in gravitational fields:
elliptic orbits of planets, parabolic trajectories of projectiles, etc.
Predictions are justifiable by induction, their past truth success is observable.

Explanation by gravitational forces is generated by a theory-generating ab-
duction:
⇒ Is not observable, can only be assessed via their entailed predictions.

The instrumentalist says (Van Fraassen 1980): I believe in the predictions
of gravitation mechanics, but not in the reality of forces. I use them as
optimal predictive instruments.
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Justification of Theory-Generating Abduction

Optimality Justifications and Realism

Are optimality justifications confined to instrumentalism?

Or is there an optimality justification for abductive realism?

For justifying belief in the theoretical claims of a theory T , we need a . . .

Stronger optimality principle (Schurz 2022)

Suppose meta-induction and the optimality principle recommend a theory T in-
strumentalistically, and additionally it holds that . . .

** every accessible alternative theory T∗ of non-negligible prior plausibility entail-
ing (approximately) the same empirical predictions as T , contains a theoretical
sub-model that is (approximately) isomorphic to T

. . . then it is rational to believe that T ’s theoretical model is truthlike – at least
more truthlike and probable than any of its competitors.

(Strong opt.: general epistemic behaviour (using general principles) should be aligned to “extended cognition” (realist interpr.))

Example 1: Ordinary realism versus the brain-in-the-vat hypotheses.

Example 2: Ordinary evolution theory versus (evolutionary) creationism.
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Justification of Theory-Generating Abduction Meta-Abduction

Meta-Abduction

The strong optimality principle (**) is about preferring simpler theories (T
as an isomorphic sub-model of T ∗).

If this is a goal/end of science, it should be made explicit
= epistemic engineering
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Justification of Theory-Generating Abduction Meta-Abduction

Meta-Abduction

But this means that O(relative success) is not only about the accuracy of
predictions but also simplicity.

Once this is made explicit, we can also design a “competition”/prediction
game about this
⇒ an account of meta-abduction (cf. Feldbacher-Escamilla forthcoming)

(Above we spoke about applying meta-induction over an aggregated convex
measure of success in predictions and simplicity.)
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Justification of Theory-Generating Abduction Meta-Abduction

Meta-Abduction and Pragmatism?

Does meta-abduction automatically buy in a great deal of pragmatism (sim-
plicity as a pragmatic factor)?

If we include simplicity, plausibility, non-ad hocness etc., then it seems: in
principle yes.

However, any form of abduction will do so if explanation is not watered
down to empirical accuracy.

Let us illustrate this by the help of an example.
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Justification of Theory-Generating Abduction Meta-Abduction

Norton-Abduction

The approach (Norton 2021, chpt.9):

Evidential debt . . . why does “adding theory” incur evidential debt?
“evidential debt: a supposition needed for the theory to succeed but for
which evidence was then lacking” (p.224)

Epistemic goal: # suppositions : pieces of evidence . . . isn’t this pragmatic?
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Justification of Theory-Generating Abduction Meta-Abduction

Abduction and Pragmatism?

But such an intake of pragmatism is not necessarily always the case.

At least sometimes we can reduce seemingly pragmatic factors to epistemic
ones.

E.g.: simplicity in the context of curve-fitting (cf. Forster and Sober 1994).

Simpler models are less prone to overfit erroneous data.

Epistemic Engineering 30 / 33



Justification of Theory-Generating Abduction Meta-Abduction

Meta-Abduction and Simplicity

E.g. for the epistemic value of simplicity:

The estimated predictive accuracy (EPA) of the family of a model F given
some data X is determined by:

EPA(F ) ∝ log(Pr(X |F )) & − c(F )

Where:
• c(F ) is the number of parameters of F (i.e. the degree of the polynomial F plus 1)

• F is supposed to be most accurately parameterised regarding X (i.e. it is the/a polynomial
of degree c(F )− 1 that is closest to X in terms of the sum of squares of the differences).

Abductive rule:
Infer from data X that Fi such that Fi is best given the set of alternatives
F1, . . . ,Fn, i.e.:

EPA(Fi ) > EPA(Fj) ∀j ̸= i : 1 ≤ j ≤ n
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Justification of Theory-Generating Abduction Meta-Abduction

Meta-Abduction, Laws, and Realism

Meta-induction & weak optimality principle (*) justify WL-uniformity (“re-
stricted uniformity”).

Employing (meta-)abduction allows for a generalisation to SL-uniformity.

The strong optimality principle (**) gives us a realist interpretation.

Such an interpretation can sometimes be backed by epistemic considerations
alone (predictive accuracy ⇒ estimated predictive accuracy).

Epistemic Engineering 32 / 33



Conclusion

Conclusion

We have outlined two instances of epistemic engineering:

Meta-Induction as re-engineering the epistemic goal of justifying induction

⇒

Meta-Abduction for engineering methods for the goal of justifying laws of
nature
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